在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
考虑到大量未标记的语音数据和高标签成本,无监督的学习方法对于更好的系统开发至关重要。最成功的方法之一是对比度的自我监督方法,这些方法需要负采样:采样替代样品与当前样品(锚)对比。但是,很难确保所有负样本属于与没有标签的锚类别不同的​​类别。本文在未标记的语音语料库上应用了一种非对抗性的自我监督学习方法来学习话语级的嵌入。我们使用没有标签的蒸馏(Dino),在计算机视觉中提出,并将其改编为语音域。与对比度方法不同,Dino不需要负采样。这些嵌入是根据说话者验证和情感识别评估的。在说话者验证中,无监督的恐龙与余弦评分嵌入了voxceleb1测试试验中的4.38%EER。这表现优于最佳的对比度自我监督方法,而EER中的相对相对40%。不需要扬声器标签的迭代伪标记训练管道将EER进一步提高到1.89%。在情感识别中,Iemocap,Crema-D和MSP播客的Micro-F1得分分别进行了60.87、79.21和56.98%的恐龙。结果暗示着恐龙嵌入到不同语音应用中的普遍性。
translated by 谷歌翻译
口语内容中的话语码切换(CS)的普及性具有强制ASR系统来处理混合输入。然而,设计CS-ASR具有许多挑战,主要原因是数据稀缺,语法结构复杂性和不匹配以及不平衡的语言使用分配。最近的ASR研究表明E2E-ASR使用多语种数据来处理CS现象的少量CS数据。但是,对CS数据的依赖仍然存在。在这项工作中,我们提出了一种方法来增加用于人工生成的CS文本的单格式数据以改善不同的语音模块。我们在利用对齐的转换对的同时基于对等效约束理论的方法,以生成语法有效的CS内容。我们的经验结果表明,两种生态和嘈杂的CS测试集,在困惑中的相对增益为29-34%,而在WER中约为2%。最后,人类评估表明,人类可以获得83.8%的生成数据。
translated by 谷歌翻译
本文介绍了一种无监督的基于分段的稳健语音活动检测方法(RVAD)。该方法包括两个去噪之后的传递,然后是语音活动检测(VAD)阶段。在第一通道中,通过使用后验信噪比(SNR)加权能量差来检测语音信号中的高能段,并且如果在段内没有检测到间距,则该段被认为是高能量噪声段并设置为零。在第二种通过中,语音信号由语音增强方法进行去噪,探索了几种方法。接下来,具有间距的相邻帧被分组在一起以形成音调段,并且基于语音统计,俯仰段进一步从两端延伸,以便包括浊音和发声声音和可能的非语音部分。最后,将后验SNR加权能量差应用于用于检测语音活动的去噪语音信号的扩展桨距片段。我们使用两个数据库,大鼠和极光-2评估所提出的方法的VAD性能,该方法包含大量噪声条件。在扬声器验证性能方面进一步评估RVAD方法,在Reddots 2016挑战数据库及其噪声损坏版本方面。实验结果表明,RVAD与许多现有方法有利地比较。此外,我们介绍了一种修改版的RVAD,其中通过计算有效的光谱平坦度计算替换计算密集的俯仰提取。修改的版本显着降低了适度较低的VAD性能成本的计算复杂性,这是在处理大量数据并在低资源设备上运行时的优势。 RVAD的源代码被公开可用。
translated by 谷歌翻译
最先进的说话者验证系统本质上取决于某种人类监督,因为它们接受了大量标记数据的培训。但是,手动注释的话语缓慢,昂贵,无法扩展到当今可用的数据量。在这项研究中,我们通过直接从原始音频中学习表征来探索说话者验证的自我监督学习。目的是生成具有较小的言论扬声器和较大言论扬声器差异的稳健扬声器嵌入。我们的方法基于最新信息最大化学习框架和密集的数据增强预处理步骤。我们在表明它们与对比度损失相结合之前表明它们实现更好的性能之前,评估了这些方法在没有对比样本的情况下工作的能力。此外,我们进行实验表明,与现有技术相比,我们的方法达到了竞争成果,并且在用一小部分标记数据进行微调时,与监督基线相比,可以获得更好的性能。
translated by 谷歌翻译